
J. Am. Chem. Soc. 1993, 115, 7719-7728 7719 

Structure-Function Relationships for 0, the First Molecular 
Hyperpolarizability 

Steven M. Risser,f David N. Beratan,*^ and Seth R. Marder* 

Contribution from the Department of Chemistry, University of Pittsburgh, 
Pittsburgh, Pennsylvania 15260, Jet Propulsion Laboratory, California Institute of Technology, 
Pasadena, California 91109, and Beckman Institute, California Institute of Technology, 
Pasadena, California 91125 

Received September 28, 1992 

Abstract: A four-orbital model is used to map the overall dependence of (3, the first electronic hyperpolarizability, on 
chemical parameters such as donor/acceptor strength and coupling between bridge and donor/acceptor orbitals. These 
calculations are used to develop general structure-property relationships for 0 and to demonstrate the physical origin 
of maxima, minima, and zeros in fi. Comparison with multiorbital calculations on specific molecules show that the 
general relationships apply to more complex structures as well. A number of strategies for manipulating ft by varying 
molecular structure emerge from the analysis. We show that the absolute maxima in the 0 surfaces fall outside of the 
range that has been probed using conventional organic donors and acceptors. 

Introduction 

The development of practical nonlinear optical devices, such 
as power limiters and electrooptical switches, has been impeded 
by the lack of materials that combine large optical nonlinearities, 
fast response times, and suitable materials properties.1^* The 
focus of much current research has been on conjugated organic 
molecules, where the delocalized ir electrons give rise to large 
electronic hyperpolarizabilities.1-5 However, the bulk nonlin
earities exhibited by state-of-the-art materials are marginal at 
best for most applications. 

The macroscopic nonlinear response of second-order materials, 
which is of interest for electrooptical modulation or second 
harmonic generation, depends both on the magnitude of the 
molecular nonlinearities and the ordering of the chromophores 
in the medium. One approach to improving the overall nonlinear 
response of a material, therefore, is to develop techniques that 
will routinely lead to a more optimal alignment of the chro
mophores in the bulk material. The optimal alignment of the 
chromophore in the materials is fixed by the specific application 
and device configuration. In many cases, if existing chromophores 
were aligned in a satisfactory manner, the bulk second-order 
nonlinear susceptibility (x(2)) would be acceptable for an 
application. However, the ability to control this alignment is 
relatively unrefined. The second possible approach to increasing 
the bulk nonlinearities of materials is to use chemical strategies 
to increase the magnitude of the molecular first hyperpolariz
ability, /8. 

The molecular origin of 0 in organic molecules has been studied 
by many methods. One of the first structure-function relation
ships developed showed that donor/acceptor organic molecules 
(which consist of a donor (D) and acceptor (A) pair linked by 
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a ir-electron conjugated hydrocarbon bridge) have a large 0 that 
is proportional to the charge transfer in the first molecular excited 
state compared to the ground state (Au).6 The research into 
increasing /3 has of ten concentrated on the development of stronger 
donors and acceptors, with less attention paid to the structure of 
the molecular bridge connecting the two. 

Recent theoretical work has predicted that as donor and 
acceptor strength are increased, /3 is expected to reach a maximum 
and then decrease.7-10 Most of the prior studies investigated a 
restricted slice through the /3 surface (or hypersurface) for the 
Hamiltonian.7'9'10 Such studies are informative but incomplete 
as specific slices may not represent the regions accessible with 
a particular family of chromophores. The present work differs 
from prior studies in that (1) the global structure of the /3 surface 
for the four-orbital Hamiltonian is investigated and (2) the 
characteristics of the four-orbital /3 surface are compared with 
those of more complex Hamiltonians and are found to be in 
qualitative agreement. 

The presence of a maximum in the /3 surfaces implies that 
there is a specific D-A pair that optimizes /3 for a given bridge 
structure. It also suggests a possible corollary, that for any donor-
acceptor pair there is a specific bridge of a given length that 
maximizes 0. Determination of the optimum D and A for a given 
bridge or the optimum bridge for a given D-A pair is an extremely 
difficult experimental task, given the number of possible bridges, 
D-A pairs, and the vast array of accessible organic, inorganic, 
and organometallic structural motifs. It is hoped that the 
qualitative features of the /3 surfaces described here will assist the 
mapping of such relationships and the tuning of nonlinear optical 
properties. 

Important insights into the 0 structure-property relationship 
may be gained through the study of simple models. In this work, 
we concentrate on a four-orbital independent-electron model, 
with four ir electrons. The four-orbital model was chosen both 
for its simplicity and its ability to qualitatively mimic the behavior 
of real NLO chromophores. Recent work has shown that the 
four-orbital model correctly predicts features such as the peaked 
dependence of/3 on molecular asymmetry, related to the observed 
solvent dependence8-10 of /3. A four-orbital model was selected 
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Figure 1. Geometry of the four orbital model used in this work. The 
atomic sites are labeled L, Bi, B2, and R. The couplings between the 
atomic sites are t\_, t, and JR. The sites are spaced equally, a distance r0 

apart. 

because it contains the minimalistic features present in organic 
18 chromophores: bonding and antibonding bridge orbitals, a donor 
site, and an acceptor site. There are both benefits and liabilities 
associated with such minimalistic models. When an intrinsically 
complicated property (indeed a nonlinear one) is to be understood, 
such models are particularly appealing provided that they include 
sufficient structure to provide meaningful guidance. The risk of 
such simple models is that they often predict global trends 
accurately, but the translation of these trends to corresponding 
real molecular structures can be difficult. 

The goal of this work is to examine the structural dependence 
of the first hyperpolarizability within the four-state model and 
to describe strategies to optimize /3, for a given donor-acceptor 
pair or for a given bridge. The hope is that the general 
relationships generated by a broad survey of molecular parameter 
space will lead to strategies for tuning /3 by synthetic design. 
Comparison will be made to corresponding multiorbital (albeit 
one-electron) calculations for a few specific cases to verify that 
the predictions of the model bear considerable connection with 
predictions of more realistic models. We will show that absolute 
as well as relative maxima in the /S surface for a given bridge are 
predicted and that the absolute maxima fall outside of the range 
that has been probed using conventional organic donors and 
acceptors. 

The next section describes the four-orbital model and the 
calculation of/3. The following section describes how the generic 
predictions of this simple model are expressed in more complex 
bridges. We then describe how the four-orbital and more complex 
calculations relate to the solvation dependence of /3. Finally, we 
discuss the strategies for maximizing /3 that arise from these 
calculations. 

Theoretical Model 

Large electronic hyperpolarizabilities are typically observed 
for molecules that have donors and acceptors linked by a 
conjugated bridge. The relevant electronic properties of these 
conjugated molecules are principally determined by the delocalized 
7r-electrons and can be successfully modelled with 7r-electron 
methods." In this work, we use the Huckel ?r-electron Hamil
tonian and a four-orbital model (Figure 1) for the molecule where 
four ir electrons are present. Although the Huckel Hamiltonian 
is simplistic, it has been shown to produce useful qualitative 
predictions of trends in hyperpolarizabilities. More important 
than the nature of the interactions included or neglected in the 
Hamiltonian is the fact that such a four-site Hamiltonian describes 
a donor-bridge-acceptor system in the simplest possible manner 
where the bridge frontier orbitals are included. 

The four-orbital model Hamiltonian matrix is 

K = 

0 

*B1 ' B 

*B2 

0 

(la) 

The Coulomb energy for a ir electron on atom i is ot\ = (<j>ffi\<t>i), 
and the intersite coupling matrix element is fy = {faffilty). 
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Although specific orbitals have been labeled as donor and acceptor, 
the identification of a site as "donor" or "acceptor" is in reality 
determined by the wave function coefficients, which are set by 
the relative energies and couplings of the orbitals. cto (aA) 
corresponds roughly to the orbital energies of the highest filled 
(lowest vacant) orbital of the isolated donor (acceptor) coupled 
to the bridge and 2*B to the HOMO-LUMO (highest occupied 
molecular orbital-lowest unoccupied molecular orbital) gap of 
the isolated bridge consisting of two identical bridge orbitals. 

Although there appear to be seven parameters in the Hamil
tonian, this number can be reduced by setting the energy zero 
equal to aB2 and choosing energy in units of the magnitude of tB-
Since we plan to vary the site energies and couplings systematically, 
it is more convenient to label sites based on the molecular geometry. 
The terms in the Hamiltonian will be labeled by the position of 
the corresponding atomic sites in Figure 1. The new set of 
parameters is defined as aL = (aD - «B2)/|'B|. «R

 =
 («A - <*B2)/ 

M. oiB = (O!BI - oiB2)/\tB\, tL = fD/|fB|, and tR = tA/\tB\. The 
Hamiltonian matrix then takes the form 

5¥ = 

O O 

O -1 
(lb) 

O O tK aR_ 
It is important to note that the values chosen for these parameters 
are rescaled or renormalized. The values commonly chosen for 
single atoms are inappropriate because eqs 1 a and 1 b are reduced 
or effective Hamiltonians. Zero overlap between the orbitals is 
assumed. 

The static first hyperpolarizability, /3, is calculated from the 
eigenvalues and eigenvectors of the Hamiltonian by using the 
standard perturbation expansion 

J\Sa -E 
<gW> OWi) (JkJg) 

i^g (E1-EJ(Ei-EJ 
,<gklg><hWi><i|Mjg> 

(2) 
tS (E1-EJ(E1-EJ 

where 11 is the dipole operator, subscripts X, 5, and a label Cartesian 
coordinates, g is the ground state, and i and j label excited states 
of the molecule. This formulation of /8 assumes that the energy 
of the applied field and its second harmonic are far below that 
of electronic transitions. It is also assumed that the hyperpo
larizability is entirely electronic in origin. Vibrational and 
orientational contributions to the hyperpolarizability arise on a 
time scale longer than those of interest here. Rather than report 
all components of the /3 tensor for molecules, the magnitude of 
the vector component of /3 is commonly given. Within the four-
orbital model, there is only a single nonzero element of the £ 
tensor, which is equal to the vector component of the tensor. 

For molecules where a single charge-transfer transition 
dominates /3, calculation of /3 can also be performed using the 
two-state approximation12 

/3= 12-
(gMe^Uee-Mgg) 

(3) 
(E,-EJ* 

where e labels the first excited state of the molecule. The factor 
of 12 arises from permutation of the indices in eq 2 and the 
presence of doubly filled orbitals in the ground state consistent 
with the convention of Buckingham.13 The dipole matrix elements 
are calculated in the standard manner.14 The excited state is 
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assumed to be formed by excitation of an electron from the HOMO 
to the LUMO, which is normally associated with the lowest w -* 
«•* transition. We will now vary the parameters in the four-
orbital model to examine the relation between the orbital energies, 
couplings, and /3. 

Dependence on Model Parameters. The first hyperpolarizability 
of the four-orbital system is a function of the five independent 
parameters aR, <»L. 'R> U.. and aB. In this section, we will show 
how /3 varies as a function of these parameters. We then examine 
the regions where /3 is maximized and investigate the nature of 
this behavior. The results will be described first for a symmetric 
bridge and then for an asymmetric bridge. 

The upper and lower limits for the parameters aR and aL were 
selected to span the range of possible values of these parameters 
within standard Huckel theory,15 with the bridge orbitals defining 
the zero point of the energy scale. Recall that the parameters 
in our Hamiltonian correspond to rescaled values, not normal 
atomic Huckel parameters. The entire range of parameter space 
spanned here may not be accessible with standard hydrocarbon 
bridges. However, using heteroatomic bridges will shift the bridge 
energetics and could make more of parameter space accessible 
to conventional donors and acceptors. The value for the couplings 
to the bridge were allowed to span the range of values from 
effectively no coupling to a coupling strength equal to that for 
a standard C-C x bond. The importance of the magnitude of 
the coupling will be explored later in the paper. 

Symmetric Bridge: a0i = an = O. A large proportion of organic 
donor-acceptor molecules examined for use as nonlinear chro-
mophores have a symmetric bridge (in the context of the four-
orbital model, a symmetric bridge has aBi = <*B2) linking the 
donor and acceptor.1"5 Examples of such bridges are benzene (as 
inp-nitroanaline, PNA), biphenyl (as in 1 -nitro-4'-aminobiphen-
yl), and stilbene (as in dimethylaminonitrostilbene, DANS). In 
this section, the effect on 0 of varying only the donor and acceptor 
energies and couplings is described. As there are four independent 
parameters for the symmetric bridge, it is not possible to show 
the entire /3 hypersurface. I nstead, we will present several surfaces 
that illustrate the relation between 0 and the parameters. First 
we will show the /? dependence on the Coulomb energies of the 
donor and acceptor sites. This relationship will be explained in 
terms of both the molecular wave functions and their energies as 
well as in terms of the three components of the two-state model 
(eq 3). The relation between /3 and the coupling to the bridge 
will then be examined. 

Figure 2 plots /3 as a function of aR and aL, with f R = f L = 0.7. 
/3 is given in units of lO-30 esu, assuming bond lengths of 1.397 
A and coupling strength (f B) of -2.39 eV (typical values chosen 
from benzene calculations). These numerical values are the order 
of magnitude of coupling and distance parameters appropriate 
for the x-electron systems and allow us to express /3 in familiar 
units. The figure is antisymmetric about the line aR = aL and 
is symmetric about the line «R = -en.. The largest values of |/3| 
are obtained when both the donor and acceptor energies are small 
(nearly equal to the bridge orbital energies). There are also 
smaller secondary peaks in the magnitude when the energy of one 
of the orbitals becomes large. The sign of the secondary peaks 
is opposite to that of the large peak in the same half-plane (above 
or below the symmetry axis). 

The large variation of /3 on this surface can be understood by 
considering the energies and coefficients of the four molecular 
wave functions. These are shown in Figure 3a for the region of 
largest |/3|, labeled A on Figure 2. The frontier orbitals are L and 
R localized states, which function as the donor and acceptor. 
Coupling to the bridge has increased the gap between the two 
frontier orbitals to 0.84|»B| from the value of 0.6|fB| that would 
exist if the L and R orbitals were not coupled to the bridge (the 

(15) Yates, K. Huckel Molecular Orbital Theory; Academic Press: New 
York, NY, 1978. 

a. 

Figure 2. /3 as a function of aL and oR. /R « /L = 0.7. 0 is in units of 
IO"50 esu. 

value of 0.6|rB| is the difference between the L and R orbital 
energies). The localization of the donor and acceptor states leads 
to a large difference in the dipole moment between these two 
states. The localization of the orbitals is not complete, however, 
which gives rise to a large transition moment between the two 
states. The two-state model (eq 3) successfully explains /3 near 
point A, as the HOMO-LUMO transition dominates /J. 

The energies and wave functions for point B on Figure 2, which 
lies along the line aL = aR, are shown in Figure 3b. The frontier 
orbitals, which are localized on both L and R, are split apart by 
coupling to the bridge, giving rise to a gap much smaller than 
that of the isolated bridge (2rB). The transition moment between 
these two states is also large, as the wave functions are concentrated 
almost exclusively on the donor and acceptor sites. However, 
since both L and R are equivalent, there is no dipole moment for 
any of the eigenstates, leading to a zero /3. 

The energies and wave functions for point C on Figure 2 are 
shown in Figure 3c. The HOMO is more uniformly distributed 
across the molecule than at point A, but the coefficients on L and 
R are large enough to result in reasonably large transition moments 
and dipole moment changes. At points D and E, on. is so large 
and negative that the left orbital decouples from the others. The 
molecule can effectively be treated as a three-orbital system, 
with two -K electrons. At point D, there is a small transition 
moment and dipole moment change between the frontier orbitals, 
leading to small /3. At point E, there is a larger dipole moment 
change and a correspondingly larger /3, with site Bl acting as the 
acceptor. 

The form of the surface shown in Figure 2 can also be understood 
in terms of the components of the two-state approximation for 
/3. In the two-state approximation, /3 depends on the transition 
moment (n%c), dipole moment change (A^), and the inverse of the 
energy gap (£-') between the HOMO(g) and LUMO(e). Figure 
4 shows these quantities vs aR and aL. The inverse of the gap 
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Figure 3. Wave functions and energies for points on Figure 2. The values for these points are (A) oL = -0.4, aR = 0.2, /3 - -217.4, (B) aL = -0.4, 
OR = -0.4, 0 » 0.0, (C) oL = -1.5, aR = 0.1, B » -55.7, (D) oL = -2.5, OR = -0.5, /S • -0.1, and (E) aL = -2.5, OR = -1.2, & - 61.4. 

(Figure 4a) has a broad central peak corresponding to degen
erate site energies and smaller secondary peaks corresponding to 
three degenerate site energies and one decoupled atom. The 
transition moment (Figure 4b) is also peaked along the <*R = <XL 
axis near OR = aL • aB = 0. As expected, ̂ 1* is maximized when 
all the sites are equivalent. Figure 4c plots AM which changes 
sign along the aR = oL line. 0 in the two-state approximation 
(Figure 4d) is the product of these three terms. As such, its 
peaks occur at values intermediate between the peaks of the three 
surfaces described above. The surface generated by the two-
state approximation is very similar to that from the full expression 
for 0 (Figure 2), with only slight differences in the magnitude 
of the secondary peaks. 0 in the two-state model is negative if 
M« < Ma- This can occur if the dipole moments are either of the 
same sign or are of opposite sign (the latter is the case along the 
«L • -OR line). 

The results shown so far have been for a fixed value of the 
coupling between the bridge and the donor or acceptor. For real 
molecules, these couplings will vary with the donor and acceptor 
Coulomb energies and normally will not be equal. The importance 
of the coupling to the bridge is shown in Figure S, where 0 as a 
function of aR and on. is shown for a weakly coupled D/A pair 
in Figure 5a and a strongly coupled pair in Figure 5b. The /3 
surfaces are similar to that in Figure 2, with large central peaks 
when aR and oL are near zero and secondary peaks when aR or 
aL become large. The magnitude of the central peak is very 
sensitive to the coupling of the donor and acceptor to the bridge, 
while the magnitude of the secondary peaks is much less sensitive. 
The central peaks also move farther away from the line aR = aL 

as the coupling increases. 

The large differences in the magnitude of /3 for different 
coupling strengths can be explained in terms of the orbital energies 
and wave function coefficients. Figure 6 shows the orbital energies 
and wave function coefficients for point A in Figure 5 (parts a 
and b). In both cases, 0 arises principally from excitation between 
the HOMO and the LUMO. Both aR and aL lie in the T / T * gap 
for the isolated bridge, (-ig to +JB)- The small energy difference 
between OR and aL combined with weak coupling to the bridge 
result in a small gap for the system represented in Figure 5a, 
while increased coupling increases the magnitude of the gap in 
the system shown in Figure 5b. The frontier orbitals for weaker 
coupling are concentrated on R and L, while, for stronger coupling. 

the HOMO and LUMO are more uniformly distributed across 
the molecule and have larger coefficients on the bridge sites. This 
shift in the wave function to the bridge leads to both reduced 
transition moments and reduced dipole moment changes, pro
ducing smaller 0. However, if the coupling to the bridge goes to 
zero, the L and R orbitals will decouple, giving rise to zero 
transition moment between the L and R localized states. 

Although the value of/3 has been shown to span many orders 
of magnitude as the parameters of the model are varied, there 
are some features common to regions with large /3. The first is 
that the energy of the isolated donor and acceptor orbitals lie 
near the gap center of the isolated bridge. This leads to a small 
HOMO-LUMO gap. The coupling of these orbitals to the bridge 
is not too strong, as this tends to increase the magnitude of the 
gap. The frontier orbitals also need to be localized on the donor 
and acceptor orbitals, in a way so as to produce both large tran
sition moments and large changes in the dipole moment between 
the HOMO and LUMO. Of course these effects are not 
independent, and alteration of the bridge to optimize one of these 
will affect the other as well. Although the conditions of having 
the HOMO and LUMO localized on the donor and acceptor can 
be achieved with current molecules, the energy levels for the 
isolated donor and acceptor groups rarely fall near the gap center 
of the isolated bridge. This suggests that a fundamental depar
ture from current design strategies may be needed to fully op
timize /3. 

Asymmetric Bridge: aBi ^ OBJ. /3 is nonzero for molecules 
that lack an inversion center. The majority of molecules discussed 
for second-order applications, such as PNA and DANS, consist 
of a donor and acceptor linked by a symmetric conjugated bridge. 
In these molecules, the donor and acceptor break the inversion 
symmetry and give rise to large /3 due to the charge transfer and 
the large transition moment between the ground and excited states. 
The balance between breaking symmetry and maintaining large 
transition moments is a key to maximizing 0. This raises the 
question of whether 0 can be enhanced by varying the bridge 
asymmetry itself. 

The variation of 0 with aR and <*L is shown for an asymmetric 
bridge in Figure 7. There are two important distinctions between 
this figure and the corresponding figure for a symmetric bridge 
(Figure 5a). One is the lack of inversion symmetry about the aR 

= aL axis. This means that 0 is larger for one arrangement of 
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Figure 4. Components of 0 as a function of a L and aR (a) l/energy gap, (b) transition moment, (c) dipole moment change, and (d) /J (two state 
approximation). 
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Figure 5. /3 as a function of aL and aR for coupling of (a) rR = rL = 0.4 and (b) »R = 1L = 1.0. The centra] peak was truncated in part (a) to provide 

are fused together to form a broader band within which 0 is large 
for the asymmetric bridge. 

Although there is a large continuous region where 0 is enhanced 
for the asymmetric bridge, there is no single explanation for these 
large nonlinearities. Figure 8 shows the eigenvalues and eigen
vectors for the labeled regions in Figure 7. At point A, both 
frontier orbitals, which are localized on L and R, have energies 
that lie between the isolated bridge orbital energies, -1.28|fB| and 
0.78|/B|. Coupling to the bridge orbitals reduces the splitting 
between the HOMO and LUMO to a value smaller than for the 
isolated orbitals. The electron density distribution of the HOMO 
is localized on L and the LUMO is localized on R, leading to a 
large dipole change. However, the transition moment between 
the two states is weakened by the lack of amplitude on both sites 
in the frontier orbitals. The most intriguing region is that labeled 
B in Figure 7. Here, 0 is large even though the isolated donor 
and acceptor orbitals have equivalent site energies. By coupling 
to the asymmetric bridge, the otherwise degenerate donor and 
acceptor atoms yield asymmetric frontier orbitals with a small 
gap between them. The HOMO and LUMO are localized on L 
and R, but the wave function amplitude is more evenly distributed 
between the two sites than for point A. This leads to a large 
transition moment between the HOMO and LUMO, with a 
substantial dipole moment change, producing a large 0. 

At C, aR is so large and negative that site R is effectively 
decoupled from the other three orbitals. The remaining orbitals 
are occupied by two r electrons, with the HOMO localized on 
L and B1 and the LUMO localized on L and the bridge sites. This 
leads to both small transition moments and small dipole changes 
between the frontier orbitals. At D, the energies of R and L are 

(16) (a) Cheng, L. T.; Tarn, W.; Stevenson, S. H.; Meredith, G. E.; Rikken, 
G.; Marder, S. R. J. Phys. Chem. 1991, 95. 10631. (b) Cheng, L. T.; Tarn, 
W.; Marder, S. R.; Stiegman, A. E.; Rikken, G.; Spangler, C. W. J. Phys. 
Chem. 1991, 95. 10643. 

greater detail away from the central peak. 
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Figure 6. Wave functions and energies for point A on Figure 5, with <*L 
= -0.4 and <*R = 0.2. Values are (a) /R = lL = 0.4, 8 = -547.2 and (b) 
' R - ( L - 1.0,/J--21.4. 

donor and acceptor coupled to the bridge than for the other. Such 
behavior has been observed experimentally for 4- and ^-substi
tuted styrene, where switching the donor and acceptor bonding 
sites produces a 30% change in /3.16 The second significant fea
ture of the asymmetric bridge is increased area in parameter 
space where 0 is enhanced. While there is a large central peak 
and smaller secondary peaks for the symmetric bridge, these peaks 
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Figure 7. 0 as a function of a\_ and OR for four-orbital model with an 
asymmetric bridge, with aB = -0.5 and /R = rL = 0.4. The central peak 
was truncated to better illustrate the region of enhanced 0. 

reversed from point C. Here the lowest orbital is localized on L. 
The HOMO is now localized on R and B2, while the LUMO is 
localized on Bl and R. This leads to much larger transition 
moments and dipole changes than were at point C, resulting in 
a much larger value of 0. 

The effects of an asymmetric bridge can best be shown by 
comparison to results for a symmetric bridge, with the bridge 
orbital energies set equal to the average of the asymmetric bridge 
orbitals. This comparison is complicated by the fact that the 
asymmetric bridge can be oriented in either fashion for a given 
donor and acceptor pair. In the large central region, the symmetric 
bridge 0 is typically about 20-40% smaller than the larger value 
of 0 for the asymmetric bridge and is approximately 40-60% 
larger than the smaller value for the asymmetric bridge. Away 
from the central peak there is no set rule. When aL is 
approximately equal to aR, it is possible for both 0 values for the 
asymmetric bridge to be larger than the value for the symmetric 
bridge. 

It is important to point out that the kind of bridge asymmetry 
discussed here could arise from relatively simple substitution of 
atoms or appended side chains without affecting the aromaticity 
of the bridge. The key feature is to have the donor and acceptor 
bonded to sites that are not equivalent. It should be noted from 
Figures 2,7, and 8 that there are points on the asymmetric bridge 
surfaces where asymmetry leads to a decrease in 0. This four 
orbital model as well as more sophisticated Hamiltonians have 
been used to model such bridge effects, which are the subject of 
section IV. There is obvious ambiguity in real molecules as to 
where the "bridge" ends and where the donor and acceptor groups 
begin. If the donor and acceptor include multiple orbitals, the 
relevant energies are molecular orbital energies rather than atomic 
orbital energies, and the bridge surface must be calculated for 
the remaining portion of the molecule. 

Generalization To Multiorbital Bridges. A principal motivation 
of this work has been to develop structure-function relations for 
0. A four-orbital model was chosen as being simple enough to 
reveal the structure dependence of 0 and yet robust enough to 
predict the structure-property behavior of more complex mol
ecules. In this section, we compare the aL/<*R dependencies from 
the four-orbital calculation to Huckel calculations of molecules 
with multiorbital bridges. From these comparisons we will 
describe strategies to generalize the structure-function relations 
developed for the four-orbital model to larger molecules. 

I 

The 0 dependence on aR and <XL for I (all C-C bonds are 
considered equivalent) "is shown in Figure9a. The corresponding 
four-orbtial surface is that for the symmetric bridge, such as 
Figure 2. The two surfaces have the same general features, namely 
large central peaks, smaller secondary peaks at large a, and 
symmetry about the line aR = aL. However, the large peaks are 
somewhat diminished in area and shifted to higher energies in 
Figure 9, while the secondary peaks have extended over a larger 
region. Both of these effects can be attributed to location of the 
HOMO-LUMO gap in I. The large central peaks in the four-
orbital calculation occurred when both the L and R localized 
states were within the gap for the isolated bridge, which was 
± 1 .0|/B| for the four-orbital model. The large peaks in Figure 9a 
occur in the region of the HOMO-LUMO gap for the isolated 
bridge of I. This gap for the bridge of I is between energies 0.0|f BI 
and +0.52|/B|- The secondary peaks, which occur when aL or OR 
is far below the HOMO energy, are also shifted to higher energies 
as the HOMO energy increases from -1 .0|'BI for the four-orbital 
model to 0.0|IR| for I. 

II 

The 0 dependence on aR and oi for II is shown in Figure 9b. 
The corresponding four-orbital surface is Figure 7, where the 
bridge is asymmetric. Because the molecule is not linear, the 
surface shown is the magnitude of the vector component of 0, not 
just the component along the long axis. The large central peak 
has fused to the secondary peaks, as in Figure 7. The band of 
large 0 has expanded in area, while the energy of the central peak 
has shifted, for the same reasons as explained above. 

AU of these simple calculations show that the largest values 
of 0 are obtained when both the donor and acceptor energies lie 
near the gap center of the isolated bridge. Typical organic donor 
(acceptor) energies lie near or below (above) the energy for the 
bridge HOMO (LUMO). Thus, the major peaks of the 0 surface 
might not be accessible for typical organic bridges using 
conventional donors and acceptors. This suggests two possible 
ways for 0 to be enhanced. One strategy would be to produce 
frontier orbitals dominantly localized on donor and acceptor that 
are at energies closer to the middle of the energy gap between 
the bridge localized orbitals. One can achieve this using molecules 
with stronger donors (larger value of aD) and weaker acceptors 
(smaller value of aA), assuming a Fixed degree of bond alternation 
in the bridge. A second method would be to alter the bridge 

(17) The parameters for the bridge are ac " 0.0. lC-c • - 1 0 . »R-C " -0-7, 
and i u c • -0.7. 
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Figure 8. Wave function and energies for three points with large 0 for an asymmetric bridge. The values are (A) oL = -0.4, OR = +0.2,0 = -841.1, 
(B) OL = -0.4, OR = -0.4, 0 = 3212.5. (C) aL = -1.2. OR = -2.5, 0 = -41.6, and (D) aL = -2.5, OR = -1.2, 0 = 198.5. 

Figure 9. 0 as a function of aL and OR for (a) I and (b) II {0m). The central peak was truncated Io better illustrate the region of enhanced 0. 

composition so that conventional donors and acceptors would lie 
near mid-gap and not too near the frontier orbitals of the bridge. 

The calculation in this section probed the effect on 0 as D and 
A were varied for a fixed bridge structure. In real compounds 
such as I and II, modification of D and A produces changes in 
the degree of bond alternation and coupling within the bridge. 
This is a very important aspect of organic x-electron bridges, 
discussed in the next section. However, it is important to 

understand the effects on /3 of varying D and A for fixed bridge 
structure in order to understand the more realistic system in which 
the D/A energetics and the bridge structure (bond alternation) 
are intrinsically interrelated. 

Solvation and 0. In the previous sections we showed that the 
four-orbital model mirrors the trends in 0 that result from multi-
orbital bridge calculations as a function of donor and acceptor 
energies. We will now show that the four-orbital "solvent 
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Solvation parameter, k 
Figure 10. Solvation curves for the four-orbital model and III. A value 
of 0 for the solvation parameter corresponds to the gas-phase molecular 
structure, while a value of 1 for the solvation parameter corresponds to 
complete charge separation. The values of 0 for each calculation have 
been scaled by the maximum value for that calculation. Curve (a) is the 
four-orbital model and (b) is III. Coupling varies with k. 

dependent" /3 predictions are consistent with those that emerge 
from multiorbital models and models that account for changes 
in the degree of bond alternation as solvation occurs. 

The first applications of the four-orbital model were to explain 
the solvation dependence of /3 for indoaniline7 and PNA.9 For 
molecules that contain electron donating and accepting groups, 
the presence of a polar solvent can lower the energy of the charge 
separated state, altering the ground-state geometry and charge 
density distribution of the molecule. In unsaturated bridges where 
the resonance stabilization of the bridge is approximately equal 
in the ground and charge separated states, solvation (and the 
accompanying charge transfer) results in a change in the sense 
of bond alternation as well as a change in the effective Coulomb 
energies and couplings of the donor and acceptor sites. In prior 
work,9-10 however, only the Coulomb energies of the donor and 
acceptor were allowed to vary with solvation. 

For molecules with accessible charge neutral and charge 
separated resonance structures, the effect of solvation can be 
included at the Hiickel level by introducing a solvation parameter 
(k) into the Coulomb and intersite coupling matrix elements.18 

This kind of model supposes that bond length alternation changes 
smoothly as D and A solvation progresses. In mixed aromatic/ 
alkene systems such as II, a more complex model that separately 
accounts for the onset of bond alternation in the aromatic ring 
vs that in the linear segment of the molecule might be needed for 
a less qualitative description of solvation. The matrix elements 
for the "solvated" molecule vary linearly with the solvation 
parameter between the values for the charge neutral and separated 
species: 

fy = (1 - fc)*jj(charge neutral) + /^(charge separated) 
(4a) 

a{ = (1 - fc)a;(charge neutral) + ^,(charge separated) 
(4b) 

Within the four-orbital model, both the donor and acceptor 
energies and couplings should be varied to mimic the effect of 
solvation on the molecule. For asymmetric bridges, such as II, 
the energy of the bridge sites must also vary with the solvation 
parameter. 

The variation of 0 with the solvation parameter19 for III is 
shown in Figure 10, along with the solvation curve generated 

(18) Benson, H. G.; Murrell, J. N. Faraday Trans. 2 1972, 68, 129. 
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from the four-orbital model when tL, tR, «A, and c*D are all varied 
with k. The curves are similar in shape, tracing an approximate 
sinusoid. The magnitude of the maximum and minimum values 
of 0 for III are not the same, as is also the case in the four-orbital 
model when the couplings are varied. The four-orbital calculation 
with fixed couplings shows only a small degree of asymmetry in 
the magnitude of the peaks. The agreement between the four-
orbital results and those for larger systems, for both the /3 
dependence on aA and «D and for the solvation effects, suggests 
that the four-orbital model should serve to provide reasonable 
chromophore design guidelines. 

Discussion and Conclusions 

We have used a four-orbital model to calculate /8, the first 
molecular hyperpolarizability, as a function of the model 
parameters. The aim has been to develop general structure-
function relations for $. $ has been shown to be sensitive to the 
parameters of the model, specifically the energies and couplings 
of the donor and acceptor sites, and the asymmetry of the bridge 
orbitals. Comparison of the four-orbital results to those from 
calculations performed on larger model systems reveals quali
tatively similar behavior. This suggests that the conclusions drawn 
from analysis of the four-orbital model can be used to assist in 
the design and modification of bridge structures for nonlinear 
optical chromophores. 

The calculation of /3 as a function of donor and acceptor energy 
shows that /3 is enhanced when the energies of the isolated donor 
and acceptor species lie near the center of the HOMO-LUMO 
gap for the isolated bridge. This was shown to be the case for 
the four-orbital as well as for the larger Hamiltonians. Analysis 
of the wave functions and orbital energies in these regions of 
large /3 show that the frontier orbitals, which dominate /3, are 
localized on the donor and acceptor sites (rather than the bridge) 
and are shared considerably between D and A. Both the dipole 
moment change and the transition moments between the frontier 
orbitals are enhanced by this localization. The HOMO-LUMO 
gap, which is determined by the donor and acceptor energies and 
the magnitude of their coupling to the bridge (for fixed tB), is 
decreased when the coupling of the donor or acceptor to the bridge 
is reduced, producing larger /3. However, as the coupling to the 
bridge approaches zero, the orbital decouples from the bridge, 
reducing the magnitude of /3. The dipole moment change and 
transition moment between the frontier orbitals can be assisted 
or hindered by an asymmetric bridge, i.e., where the donor and 
acceptor are bonded to nonequivalent sites. This effect, where 
the magnitude of j8 can be altered by switching the donor and 
acceptor bonding sites, has been observed experimentally for 
styrene derivatives. 

The dependence of /3 on the parameters of the four-orbital 
model can also be explained in terms of the two-state approx
imation for /3. The three components of /8 in the two-state model 
are the dipole change, transition moment, and energy gap between 
the HOMO and LUMO. All three of these quantities are largest 
when the donor and acceptor site energies are in the HOMO-
LUMO gap of the bridge, while the dipole change also adds the 
nodal properties shown for /3. Comparison of /3 calculated with 
the two-state approximation to that calculated with the full 
perturbation expression has shown that the two-state approxi
mation is valid for most regions of parameter space, with the 

(19) For this calculation, ac = 0.0, tc-c - -0.93 for a single bond and tc-c 
= -1.07 for a double bond. The nitrogen parameters were as = -1.5 and /c-N 
= -0.8 for the neutral species and as = -0.5 and fc-N = - 1 0 for the charge 
separated species. The oxygen parameters were ao = -1 O and tc-o = -1 -0 
for the neutral species and a 0

 = -2-0 and tc-o = -0.8 for the charge separated 
species. 
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exception of the regions where the small secondary peaks appear 
(see Figure 2). These peaks arise when one orbital effectively 
decouples from the rest of the molecule. This is equivalent to 
having a single donor or acceptor substitution on a bridge. 

The purpose of this work was to derive structure-function 
relations for /S. The generic rules found are simple but widely 
applicable. The closer the energies of the states lying in the 
bridge gap to the gap center (while retaining some asymmetry), 
the larger the |8 produced. This class of structures (lying near 
the major peaks in the /3 surfaces) would allow the frontier orbitals 
to localize dominantly on D and A, leading to large dipole moment 
changes, transition moments, and E~x. At present, typical organic 
chromophores lie far from the major peaks of the (3 surfaces, and 
much stronger donors and weaker acceptors are needed to reach 

these regions. Finally, /J can be enhanced with an asymmetric 
bridge. With such asymmetry, both the (HOMO-LUMO) dipole 
change and the transition moment are enhanced by contributions 
from the bridge itself. 
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